CIGRE SESSION 2016

TUTORIAL

Guide to the conversion of existing AC lines to DC operation

Presented by Stefan Steevens

SC B2

22 August 2016

TABLE OF CONTENTS	SESSION 2016
SECTION 1	Introduction
SECTION 2	AC to DC conversion opportunities
SECTION 3	Conversion configuration options
SECTION 4	Corona and field effects of converted lines
SECTION 5	Insulation coordination aspects
SECTION 6	Issues and costs of line conversion
SECTION 7	Case studies
SECTION 8	Further investigations
SECTION 9	Conclusion

3

SECTION 3: DC line configurations after conversion	-	TUTORIAL 🕈		
- H				
Monopole Itilizies all three conductors	Monopole	Bipole		
Requires earth return				
 Bipole 	:::	÷ • •		
 Only two conductors utilized in operation 	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
 Provides neutral conductor 	Tripole	Hybrid		
 Tripole Utilizes all three conductors 	• •/- •	~• •(
 AC/DC hybrid 		~• •		
 Requires considerations regarding hybrid corona, field effects etc. 				

 Averaged head-hair sensation level as a function of DC electric field for AC electric fields of 1, 2, 5, 10, and 15 kV/m

SECTION 5 TUTORIAL Insulation coordination aspects	SESSION 2016 TUTORIAL
--	--------------------------

LC.	ION 5:		TUTORIAL
C insul	ator dimensioning		
Norm DC	ally, existing AC insulators have	to be replaced with	insulators intended for
	 Ceramic & glass insulators for electrical characteristics 	or DC have special	corrosion protection &
	 Composite long-rod insulators (HTM) have generally better ceramic or glass insulators of th 	made of Hydrophob pollution performan e same length	icity Transfer Materials ce in comparison with
	limited space available on the	ne existing line n	ecessitates optimized
The dimer	isioning of the DC insolutors		
The dimer	 Simplified dimensioning approc 	ıch (TB 518)	

SECTION 5: DC insulator coordination • Temporary overvoltages • Depending on converter configuration • Depending on converter configuration • Normally < 1.8-2.0 p.u. • Sour on headinty pole for single pole-to-ground faults • Normally < 1.7-1.8 p.u. • Fast-front overvoltages • Occur when lightning strikes conductors or shieldwires • Slightly higher stress on the insulation than with AC due to high and constant conductor voltage • Positive pole vulnerable to backflashover • Negative pole vulnerable to shielding failure

SECTION 5:

DC insulation coordination

• Overvoltage withstand of air clearance

- Transients are superimposed on the DC voltage
 Overvoltage withstand of air gaps is only marginally affected by the presence of DC bias (use total peak)
- Safety clearance to ground level
 - Governed by national codes & regulations (for AC)
 Usually based on coordination between the flashover voltage of insulators & the flashover voltage of the safety clearance by applying appropriate gap
 - factors • Fast-front overvoltages are decisive for determination of safety clearances on DC lines

SECTION 5:

DC insulation coordination

Neutral conductor (if present)

- Slow-front overvoltages in the range of a few hundred kilovolts are induced on the neutral conductor during pole-to-ground faults
- High fast-front overvoltages occur across the neutral insulation upon lightning strikes to the line
- Both events may cause flashovers of the neutral insulation
- Arcing horns with sufficient V-I characteristics are needed in order to extinguish the arc

FFO in	pu at fault location,	conver	ter teri	ninal a	nd GIL	-OHL in	nterfac	e cause	d by
lightnin	g								
FFO at llic	ahtning strokes to			Bir	ol		_	symme	etrical
transmission line		2-level	2-level VSC. 2-level VSC.				monopol		opol
		C _{DC} = 25 µF		$C_{DC} = 1 \mu F$		MMC		$C_{DC} = 1 \mu F$	
		conv.	GIL-	conv.	ĠIL-	conv.	GIL-	conv.	GIL-
		term.	OHL	term.	OHL	term.	OHL	term.	OHL
он	without arresters	1,15		3,8		16,1		3,8	
onic	limited by arresters			2,1		2,1		2,1	
	without arresters	1,15	4,0	3,8	4,0	5,2	5,2	3,8	4,
OHL/GIL									

COPYRIGHT & DISCLAIMER NOTICE

COPYRIGHT © 2016

This tutorial has been prepared based upon the work of CIGRE and its Working Groups. If it is used in total or in part, proper reference and credit should be given to CIGRE.

DISCLAIMER NOTICE

"CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the information. All implied warranties and conditions are excluded to the maximum extent permitted by law".

References

- Cigre Technical Broschure 583
- C. Neumann, A. Wasserrab, G. Balzer, B. Rusek, S. Steevens, K. Kleinekorte, "Aspects of insulation coordination for DC links using hybrid lines", Cigre-IEC Colloquium, Montreal, 2016
- B. Rusek, C. Neumann, S. Steevens, U. Sundermann, K. Kleinekorte, J. Wulff, F. Jenau, and K. H. Weck, "Ohmic coupling between AC and DC circuits on hybrid overhead lines,", Cigre Symposium, Auckland, 2013